Preface

Understanding and quantifying mortality in pelagic, early life stages of marine organisms — Old challenges and new perspectives

1. Quantification of mortality

Estimating mortality of planktonic organisms in the sea is challenging. As stated above, most of the difficulties are common to both zooplankton and ichthyoplankton research. In reviewing the challenges facing quantification of zooplankton mortality rates, Ohman (this issue) addresses assertions that quantifying mortality is a largely intractable task. One assertion is that it is not possible to repeatedly sample the same population over time and that advective losses dominate other sources of loss (and gain). However, Ohman concluded that in cases of systems with closed or semi-closed circulation, sequential Eulerian sampling can be effective for quantifying mortality within a given population if spatial scales are defined explicitly and are large enough to ensure that residence time of the fluid is longer than the time scale of significant changes in abundance of the population. Similar conclusions have been derived from larval fish studies (e.g., Heath and Pepin, 1998; Pepin et al., 1995). Ohman (this issue) also proposed Lagrangian approaches to address some issues, although these approaches are costly in vessel time and are difficult to sustain over longer timescales. Such methods have been applied successfully to estimate larval fish mortality rates (e.g., Heath and MacLachlan, 1987). Other challenges raised by Ohman (this issue) are the problems caused by patchiness of organisms in the sea, which leads to low precision in mortality estimates, and the difficulty in being able to sample relevant sizes and life history stages in an unbiased manner. This last point is especially important for fish early-life stages, where young fish can grow by orders of magnitude during their pelagic larval to juvenile transition period. In a modelling study, Thanassakis et al. (this issue) provide an example that demonstrates this type of bias. However, such challenges can be alleviated by proper sampling design (good coverage, replication, and awareness of physical features that may affect distribution) and careful analysis of abundance estimates obtained from multiple sampling instruments. Adequate replication and sampling effort are particularly important to account for patchiness when applying methods such as Vertical Life Tables (e.g., Aksnes and Ohman, 1996), which may otherwise result in negative mortality rates for some stages.

2. Sources of mortality

The effect of food-mediated mechanisms that control abundance of marine organisms was identified long ago, and formed the basis of classic recruitment hypotheses like the “critical period” (Hjort, 1914) and “match–mismatch” (Cushing, 1972, 1990). Meyer et al. (this issue) review laboratory studies, documenting nutritional condition and survival of fish larvae, and conclude that initiation of
exogenous feeding is a “critical period” when larvae are very sensitive to starvation, particularly at higher temperatures. They stress the importance of a match between larval phenology and prey availability, and the interaction with environmental conditions during this period (Meyer et al., this issue; Thanassakos and Fortier, this issue). However, sensitivity to starvation is not only influenced by external conditions; maternal characteristics affect egg quality (e.g., Marteinsdottir, and Steinarsson, 1998) which, in turn, can impact larval resistance to starvation. Quantifying the internal mechanisms controlling larval growth is no simple task, partly because bioenergetic models can suffer from lack of detailed knowledge of physiological parameters, although sensitivity analysis can be used to evaluate responsiveness and importance of individual parameters. Even though the direct contribution of starvation-induced mortality has been downgraded in recent decades (Bailey and Houde, 1989; Leggett and Debelis, 1994), the intuitive links between food, growth and mortality continue to be the focus of considerable research effort (Houde, 2008, 2009).

Beyond the direct effect of food on mortality (through starvation), recent emphasis has focused on length- and growth-dependent mortality (Takasuka et al., 2004). Thanassakos et al. (this issue) use a bioenergetic, individual-based model (IBM) to investigate the relative importance of length-dependent and growth-dependent mortality during the first 45 days in the life of Arctic cod (Boreogadus saida). Their results suggest the sequential occurrence of both types of mortality, i.e. a gradual increase in importance of growth-dependent mortality at the expense of length-dependent mortality, which decreases as larval length increases. The relationship often reported in the literature between mortality and temperature, in fact, could be the result of growth-dependent mortality, since lower temperatures often lead to slower growth and development and, consequently, longer stage duration. However, such relationships may mask a match–mismatch between larvae and their prey and/or predators (Nash and Geffen, this issue), particularly since predation is considered to be the main source of larval mortality (Hunter, 1981; Bailey and Houde, 1989), a view shared by WKMOR participants. Heath et al. (this issue) concluded that, in the absence of interannual trends in growth rates, the observed changes in loss rate of larval sandeel (Ammodytes marinus), sampled at a monitoring station off the Scottish east coast, must be attributed primarily to variable predation rates.

Contrary to the common perception that mortality of fish during early larval stages is largely density-independent, while density-dependence is generally observed in late larval/juvenile stages (Nash and Geffen, this issue), Heath et al. (this issue) proposed that the apparent dome-shaped relationship between mortality rate and larval abundance was indirect evidence of density-dependence, assuming a relatively constant abundance of predators throughout the time series. Notably, quadratic closure terms similar to the dome-shaped relationship above have been used in zooplankton models (Ohman, this issue). Furthermore, Nash and Geffen (this issue) propose a baseline level of density-independent mortality in early-stage plaice (Pleuronectes platessa), in addition to density-dependent factors that come into play when the numbers of late larval/juveniles are sufficient to affect productivity of prey and/or predator behaviour in nursery areas. These observations and insights warn against over-simplistic approaches. Depending on circumstances, density-dependent and density-independent mortality can play a significant role at all stages in the early life of marine organisms.

There are other non-predatory sources of direct or indirect mortality in the sea, including parasitism, disease and toxicity, e.g. due to pollution (e.g., Heath and Nichol, 1991; Gallego et al., 1995; Khan, 2009; Nash and Geffen, this issue). These mechanisms of mortality can be rare, or rarely observed, and more research is needed to quantify their relative contribution to mortality through direct effects and indirect effects on growth and predation. Ingvarsdotir et al. (this issue) show how lethal and sublethal effects to larval herring could be caused by relatively low, ecologically relevant concentrations of dispersed oil in the laboratory, even at a considerable time (2 months) after exposure.

3. The role of individual-based models in understanding mortality

The use of coupled physical–biological individual-based models (CPBM) has increased our understanding of the interacting factors that influence fish early life stages (North et al., 2009) and zooplankton. In the specific role of understanding and quantifying mortality, there are numerous examples in the literature where these CPBMs have made a valuable contribution. Peck and Hufnagl (this issue) review sensitivity analyses and scenario tests in published modelling research that provide estimates of sources of loss from populations of early life stages of marine fish. CPBMs are ideally suited to evaluate losses from a population resulting from physical processes (advection, diffusion), which can present serious obstacles to quantifying mortality in the sea (see above). The CPBMs can be used to distinguish “advective losses” from “true mortality” (e.g., Paris, 2009), if care is taken to account for factors such as swimming behaviour and movement of zooplankton and fish larvae (Peck and Hufnagl, this issue) which violate the common assumption of passive drift. Starvation, growth- and size-dependent mortality (“food-mediated mortality”) are also generally incorporated into CPBMs (Thanassakos and Fortier, this issue), but such processes require numerous functions and parameters relating to intrinsic and extrinsic factors (Peck and Hufnagl, this issue). Such detailed and necessary information is often lacking and can only be obtained by dedicated observational research in the laboratory or at sea, and ideally is informed by sensitivity analysis (Thanassakos and Fortier, this issue) to assure that observational efforts target the most critical parameters.

Despite significant progress, the ultimate goal of modelling explicitly and mechanistically all relevant processes that control survival of zooplankton and early life stages of fish still has not been reached. For a truly mechanistic representation of growth, physiological parameters and functions, as well as foraging parameters such as estimates of larval visual field and predatory behaviour, must be quantified (Peck and Hufnagl, this issue). The difficulty of explicitly incorporating into models food- and predation-mediated mortality processes has led to imposed daily mortality rates that incorporate the outcome of those top-down and bottom-up processes implicitly. While this implicit approach may be valid, depending on the specific objective of the modelling exercise, it makes assumptions that may not incorporate temporal and spatial variability in mortality rates often observed in the sea (Peck and Hufnagl, this issue) and, accordingly, may bias results or limit their general applicability. Intermediate between implicit and mechanistic models are those that base food- and predation-mediated mortality relationships on the spatio-temporal overlap of fish larvae or zooplankton with their predators and prey, resulting from observational data or model outputs (lower trophic level models for prey, higher trophic level models for predators). Such an approach is promising but will present its own challenges (e.g. matching of spatial and temporal scales). Proliferation of modelling approaches and comparison of their performance have the potential to advance understanding and prediction of mortality in the sea.

4. Concluding thoughts

Participants of the WKMOR workshop agreed that the way forward relies on a combination of experimental, observational and modelling approaches (Table 1, ICES, 2010). Increasing capability to conduct experimental research on early-life stages and zooplankton and to understand physiology and disease have opened the door to evaluate causes of mortality in more realistic ways than in the past. Additionally, experimental research and otolith analysis from field samples can identify characteristics of survivors and non-survivors, and quantify parameters

required for modelling mortality in the sea. Models have emerged as powerful and essential tools to identify important processes that directly or indirectly generate mortality. Integrated observational studies with physical measurements and models of drift show promise for separating advection loss from natural mortality. Mechanistic models of early-life dynamics, in which mortality is an emergent property, are proving to be valuable tools. Targeted, process-oriented experimental and observational work is critical to support model development. The WKMOR workshop (ICES, 2010) and the series of papers published herein constitute a timely review and status report on knowledge of mortality in pelagic, planktonic stages of fish and zooplankton. Periodic reviews of this critical topic in the future will be important to inform the science community of advances in observational and modelling methods that can advance our understanding of mortality in the sea and the processes that govern zooplankton dynamics and fish recruitment variability.

References


Hjalmarson, M., Naylor, J., Heap, I., Fairweather, T., Robinson, S. (this issue) Larval mortality in the sea: effects of different concentrations of crude oil on feeding larvacean, Atlantia herring (Clupea harengus).


Nash, R., Geffen, A.J. (this issue) Mortality through the early life-history of fish: What can we learn from European plaice (Pleuronectes platessa L.).


Ohman, M. (this issue) Estimation of mortality for stage-structured zooplankton populations. What is to be done?


Peck, M.A., Hufnagl, M. (this issue) Can IBMs tell us why most larvae die in the sea? Model sensitivities and scenarios reveal research needs.


Thanasedes, S., Fortier, L. (this issue) An Individual Based Model of Arctic cod (Boreogadus saida) early life in Arctic polynyas: I. Simulated growth in relation to hatch date in the Northeast Water (Greenland Sea) and the North Water (Baffin Bay).

Thanasedes, S., Robert, D., Fortier, L. (this issue) An Individual Based Model of Arctic cod (Boreogadus saida) early life in Arctic polynyas: II. Length-dependent and growth-dependent mortality.

Alejandro Gallego

Marine Scotland Science, Marine Laboratory Aberdeen P.O. Box 101, 375 Victoria Road, Aberdeen AB11 9DB, Scotland, United Kingdom

Corresponding author.

E-mail address: a.gallego@marlab.ac.uk.

Elizabeth W. North

University of Maryland, Horn Point Laboratory, P. O. Box 775, 2020 Horn Point Road, Cambridge, MD, USA

E-mail address: enorth@umes.edu.

Edward D. Houde

Chesapeake Biological Laboratory, P. O. Box 38, One Williams St., Solomons, MD USA

E-mail address: ehoude@umes.edu.

Available online xxxxx